Linear models for reductive group actions on affine quadrics

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Models for Reductive Group Actions on Affine Quadrics

RÉSUMÉ. — Nous étudions les actions des groupes réductifs sur les quadriques affines complexes dont le quotient est de dimension 1. Une telle action est dite linéarisable si elle est équivalente à la restriction d’une action linéaire orthogonale dans l’espace affine ambiant de la quadrique. Une action linéaire satisfait à certaines conditions topologiques. Nous recherchons si ces conditions son...

متن کامل

Stratifications Associated to Reductive Group Actions on Affine Spaces

For a complex reductive group G acting linearly on a complex affine space V with respect to a characterρ, we show two stratifications ofV associated to this action (and a choice of invariant inner product on the Lie algebra of the maximal compact subgroup ofG) coincide. The first is Hesselink’s stratification by adapted 1-parameter subgroups and the second is the Morse theoretic stratification ...

متن کامل

Group actions on affine cones

We address the following question: Determine the affine cones over smooth projective varieties which admit an action of a connected algebraic group different from the standard C∗-action by scalar matrices and its inverse action. We show in particular that the affine cones over anticanonically embedded smooth del Pezzo surfaces of degree ≥ 4 possess such an action. A question in [FZ1] whether th...

متن کامل

Rational Group Actions on Affine Pi-algebras

Let R be an affine PI-algebra over an algebraically closed field k and let G be an affine algebraic k-group that acts rationally by algebra automorphisms on R. For R prime and G a torus, we show that R has only finitely many G-prime ideals if and only if the action of G on the center of R is multiplicity free. This extends a standard result on affine algebraic G-varieties. Under suitable hypoth...

متن کامل

Quotients by non-reductive algebraic group actions

Geometric invariant theory (GIT) was developed in the 1960s by Mumford in order to construct quotients of reductive group actions on algebraic varieties and hence to construct and study a number of moduli spaces, including, for example, moduli spaces of bundles over a nonsingular projective curve [26, 28]. Moduli spaces often arise naturally as quotients of varieties by algebraic group actions,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin de la Société mathématique de France

سال: 1994

ISSN: 0037-9484,2102-622X

DOI: 10.24033/bsmf.2244